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A S Y M P T O T I C  E X P A N S I O N  

OF T H E  G R E E N  F U N C T I O N  

OF A N  I N T E R N A L - W A V E  E Q U A T I O N  F O R  t --* oo 

V. A. Borovikov UDC 532.59; 534.1 

The Green function of an internal-wave equation for a horizontally uniform, stratified fluid layer Z_ < 
z < Z+, where Z_ and/or  Z+ can become infinity, is considered. For the case of waveguide propagation of 
internal waves [i.e., for N2(z) = gdln po(z)/dz --* 0 at [z I --~ oo] and the additional condition that the function 
N(z) has one local maximum, the asymptotic behavior of the Green function for t --~ oo is constructed. The 
well-known representation of the Green function as a sum of normal waves is used for this. These waves are 
replaced by their WKB-asymptotics [1], after which Poisson's summation formula is used, and the resultant 
integrals axe calculated by the steady-state method. 

1. F o r m u l a t i o n  of  t h e  P r o b l e m .  In region f~ ( - o o  < x, y < oo, and Z_ < z < Z+, where Z_, 

Z+ can turn to q:cx), respectively) the Green function G(t, ~ + y2, z, zo) of the internal-wave equation is 
considered: 

02 
Ot 2 (Gzz -t" Gyy h- G=z) q- N2(z)(G== -b Gyy) = ~(t)~(x,y)~(z - zo). (1.1). 

The uniqueness of solution is ensured by the condition G = 0 at t < 0 and by the requirement that 
G decreases as x 2 + y2 + z 2 __. cx~. The Dirichlet boundaxy condition or the Newman condition is set on the 
corresponding boundary for finite Z+ or Z_. The asymptotic representation of G for t --* co is to be found. 
The problem considered is the original one for a wide range of issues related to the behavior at large times of 
the fields of internal waves excited by distributed oscillating sources. 

The asymptotic representation of G for Eq. (1.1) in the half-space z > 0 for N2(z) = BZz (B =cons t )  
was found in [2, 3] proceeding from approximate [2] and exact [3] expressions for th," Green function. Based 
on these resul 3, Borovikov [4] put forward the hypothesis that, in the general case, f~c t --~ ~ the asymptotic 
expansion of Green function has the form 

G(t, r, z, zo) .~ ~ Ap " (tt.dp -~- ~)p) q- O(t--1/2), (1.2) P ~pp sln 

where Ap and wp are functions of r, z, and z0; and ~p are constants. Expression (1.2) is analogous to the 
radial (geometrical-optical) description of the wave field for the Helmholtz equation Au % k2n2(x, y)u = 0: 

u(t, x, y) .~ ~ Ap exp ik~p, 
P 

with the difference that the large parameter determining the characteristic period of oscillations for the 
asymptotic expansion of the Green function is the time t rather than the wavenumber k. This means, in 
particular, that the internal-wave field excited by a ~-shaped source becomes more and more short-wave when 
x, y, and z are fixed and t increases. 

In [4], an eikonal equation for wp = wp(r, z, zo) and a transport equation for Ap = Ap(r, z, z0) were 
derived and their solution that provides the desired asymptotic representation of G is presented. 
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Asymptotic representation (1.2) is justified and generalized in the present paper for the waveguide 
propagation of internal waves, i.e., under the assumption that either Z+ are finite or (in the case of infinite 
Z_ and(or) Z+) N2(z)  ~ 0 as z --, oo. The above assumptions satisfied, the vertical spectral problem 
corresponding to Eq. (1.1) has a discrete spectrum. The function G is constructed using the method of 
separation of variables (see, for example, [5]) and is presented as the sum (3.1) of normal waves. 

Let us also assume that N2(z )  has one local maximum. Then, the WKB-asymptotics can be written for 
normal waves. The resultant series is transformed into a sum of integrals using Poisson's summation formula. 
Calculation of these integrals by the steady-state method yields the desired asymptotic representation of the 
Green function. 

A similar approach was developed in [6] to pass from a mode description of the fields in acoustic 
wavegnides to a radial description. However, there is a significant difference in situations for acoustic and 
internal gravitational waves. For acoustic waves, the radial method (and its modifications in the case of fields 
with caustics) gives asymptotic representations of the field in each fixed vicinity of the source for sufficiently 
large k. Therefore, a relationship between the two methods for field description is established in [6], each of 
them having an independent justification. In the case of internal waves, asymptotic series (1.2) is valid only 
for sufficiently large t. Within the framework of the approach developed in [4] we can say nothing about the 
Green function for limited t. Thus, constructing asymptotic series (1.2) proceeding from the Green function 
represented as a sum of normal waves is a single available method for justification of this asymptotic expansion 
at the moment. 

Let us consider the physical sense of the above constraints. The condition of wavegnide propagation is 
fulfilled in all cases of internal-wave propagation in water (both under natural conditions and in laboratory 
experiments). In addition, rejection of this condition will apparently change neither the qualitative behavior 
of the Green function nor the algorithm for constructing its asymptotic representation described below. 

The condition of uniqueness of the local maximum of the Brunt-V~is~.l~. frequency is satisfied in 
laboratory experiments in which the water-density distribution in a tank is close to that of a two-layer 
medium, and under natural conditions of wave propagation on a shelf or in the deep ocean when the seasonal 
thermocline is absent or the influence of the depth pycnocline can be ignored. At the same time, this condition 
is essential for our asymptotic representation. If it is not satisfied, the rays can be captured by the second 
local maximum. The trajectory of the ray emanating from the source O is a discontinuous function of the 
parameter to (see below), and the algorithm" below for determining the asymptotics needs a considerable 
generalization. 

2. A l g o r i t h m  for D e t e r m i n i n g  t h e  A s y m p t o t i c s .  Let us formulate an algorithm for determining 
the functions cop and Ap in asymptotic series (1.2). For this, we introduce the notion of a ray. Each ray 
emanating from the source O (r = 0 and z = z0) is characterized by the value to [to ~< N(z0)] and is defined 
as a curve that satisfies the equation 

dz to 
dr '5 (2.1) 

k/N2 (z) - r 

where 6 = -t-1. This equation is integrated for fixed (f from point O until point P = (r , z )  falls on the 
boundary of region ~ or on the horizon z on which N ( z )  = w; after this we change the sign of ~i and continue 
the integration. 

Let us call the point P = (r ,z),  at which the integration direction is altered, i.e., 6 is changed, the 
turning point. Obviously, at the turning point we have z = z+, where 

z+ = rain z+(w), z_ ---- m a x  z_(w). ( 2 . 2 )  

Here z+(w) [z_(to) < z+(w)] are roots of the equation N ( z )  = w. 

If the turning point P lies on the boundary z = Z+ of region ft, a ray that goes out of this point 
makes the same angle with the boundary as the incoming ray. Let us call such a turning point the point of 
ray reflection. If N ( z )  = w at P, the ray direction tends to vertical when approaching this point, as is seen 
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from (2.1). We call such a turning point the point of ray return. 
If we again get to the turning point during the next integration, we change once again the sign of 6, 

etc. 
To formalize this procedure, we assume that 

i(zl,z2) = )2~/lN2(z_z_)w -w2[ 

Zl 

dz; 

I = I(z_, z+). 

We also introduce the integrals Ip which depend on the integer parameter p: 
for p =  0 

Io = [I(z0, z)l; 

f o r p >  0 

f o r p <  0 

I(zo, z+) + ( p -  1)I + I(z_,z) 
I,, = I(zo, z+) + ( p -  1)I + I(z, z+) 

for even 

for odd 

I(z_,  z0) + (Ipl - 1)I + I(z, z+) for even 

Ip = I(z_, zo) + (Ipl 1)I + I(z_, z) for odd 

The p-fold reflected rays Lp(w) and L_p(w) are defined by the formula 

(2.3) 

(2.4a) 

(2.4b) 

P, 
(2.4c) 

P; 

P, 
(2.4d) 

p. 

r = Ip(z,~). (2.5) 

For given r, z0, and z, the function wp = wp(r, z, z0) in (1.2) is defined as a solution of Eq. (2.5). Since Ip is a" 
monotone decreasing function of w, this solution is unique if ever exists. For every r > 0, there is only a finite 
number of p values for which the function wp is defined, i.e., a finite number of terms in (1.2), this number 
growing with increasing r. An exception is only the case z = z0 = ~' where ~ is the value of z for which N(z) 
reaches a maximum. In this case, Eq. (2.5) has solutions for every p, and sum (1.2) has an infinite number of 
terms. 

According to [4], the function Ap(r, z, zo) in (1.2) has the form 

where 

Ap(r, z, z0) = A(r, z, zo,wp), (-6a) 

(2~)-3/~ ( - 1  a ~  i/~ (2.6h) A(r, Z, Z0, ~ ( r ,  Z, z0) ) = [ ( N 2 ( z  ) _ tM2)(g2(z0 ) _ W2)]1] 4 \'~-'-~" OT ] " 

It remains to determine the phase shift ~bp. Let r = ~r/4 and let the turning point P = (r,z• 
correspond to the phase increment: 

{ - %  if z• = Z• i.e., P is the point of ray reflection, (2.7) 

5+ = -~ ' /2 ,  if z• = z+(w), i.e., P is the point of ray return. 

The phase shift Cp is the sum of the initial phase shift ~b0 and phase increments at all turning points of the 
ray Lp: 

+ -~- (6+ + 6_) for even P, 

r p - 1  
Cp = ~- + 5+ + - 7  (5+ + 5_) for odd p > 0, (2.8) 

Ipl 2 1 ~ + 5_ + - -  (5_ + 5_) for odd p < O. 

Asymptotic expansion (1.2) is not uniform. In particular, it is inapplicable in the following cases: 

608 



(a) In the vicinity of the source horizon z = z0, i.e., at the limit to0(r, z, z0) --+ 0, when the term in 
(1.2) with p = 0 tends to infinity; 

(h) In the vicinity of the points of ray return, i.e., at the limit N2(z) - to~ --+ O, when two neighboring 
terms in sum (1.2) corresponding to two rays of which one approaches the return point and the other leaves 
it tend to infinity [a similar situation occurs as N2(z0 )  -- to 2 ~ 0]; 

(c) In the vicinity of the rays Lp for which the return point tends to the boundary of region f/, i.e., for 
which z_(top) --+ Z_ or z+(top) --+ Z+, and, hence, the phase increments ~F_ or g+ are discontinuous, according 
to (2.7). 

It will be proved below that  the.uniform asymptotic representation is constructed as follows: 
In case (a) [4], in the term with p = 0 tending to infinity in sum (1.2) the function sin(fro0 + r/4)/ tVq-~ 

replaced by r~-f'-2Jo(ttoo) (Jo is a Bessel function). is 
In case (b) [4], the two terms tending to infinity 

A(r, z, z0, top+l) A ( r , z, zo, top) sin ( ttop + Cp) + sin (ttop+l -'~ •p -- r / 2 ) 

are replaced by a combination of the Airy function and its derivative: 

V/"~t -1/3 sin (t~ + ~bp - ~r/4) r  2 + g l )  Ai( - t2 /a( )  

+ v/Tt -2/3 cos (t~ + Cp - ~r/4) r - BO Ai' ( -W3r (2.9a) 

where 

_ top +top+l r = 3 A(r,z,  zo,top) A(r,z, zo, top+l) (2.9b) 
2 ' ~ (top - top+l) 2/3, B1 = ~ , B2 = vq-~p+x 

In case (c), the phase increments ii+, which are discontinuous for values to = to+ such that z+(to) = Z+, 
are replaced by the smoothed functions ~+(tqp, to). To define the latter, we introduce the functions Q+(k, to, z): 

Q+(k, to, z) = sign (z+(to) - z) [~-II (z+(to),z)l] 2D, 

Q_(k, to, z) = s ign( z -  z_(to)) [3-f~lI (z,z_(to))]] 2D. (2.10) 

Here, I(zl,z2) is integral (2.3). It is easy to verify that if N(z) is an analytical function in the vicinity of 
values of z+(to) with a non-zero derivative , then Q+(z) are analytical in the vicinity of z+(to) and z_(to), 
respectively. 

We set [7, formula 10.4.69] 

A i ( - x )  = M(x) cos O(z), B i ( - z )  = M(z) sin O(z), (2.11a) 

where Ai(x) and Bi(z) are Airy functions, and introduce the functions 

20(z) for x < 0, 
4 X3/2 0(x) = 20(x) + ~ for x > 0. 

According to [7, formula 10.4.79], 

~( { 7r for x ---+ -oo ,  
lim z) = ~r/2 for 121--.oo z oc. 

Let 

"~+( k, to) = "O ( Q +( k, to, Z+ ) ) - 37r/2. 

(2.11b) 

(2.12a) 

(2.12b) 

Then the smoothed functions ~+(t, to) have the form 

"~+( t, to) = "d+( tqp, to ). 

609 



Here qp = 10 p/0 l-' and Ip is an integral (2.4). If the turning point z• is a return point, i.e., it coincides 
with z• we have Q+(t.qp, to, Z•  ~ - o o  at t --* oo and g+ --, - r / 2 .  If z• is the return point, we have 
Q• Z+) ~ oo and 6• --* -~r. Thus, definition (2.12) is in agreement with (2.7). 

Asymptotics series (1.2) is also inapplicable when z and z0 are on the horizon ~ on which N(z)  reaches 
a maximum. Then series (1.2) includes an infinite number of terms, their amplitude is bounded from below 
for p --* oo, and the uniform asymptotic series of the Green function has a more complicated form. This case 
is not considered here. 

3. E x p a n s i o n  of  t h e  G r e e n  F u n c t i o n  in T e r m s  of  N o r m a l  Waves .  We now justify the formulated 
algorithm. According to [5], the Green function G(t, r, z, z0) has the form 

oo 

c(t, z, z0) = s . ,  (3.1a) 
n ~ 0  

where 
oo 

1 f J0(kr) sin to" S ,  = - 2---~ ~ -  ~on (z, k) ~n (zo, k) dk; (3.1b) 
0 

and ton = w,,(k) and ~ , ( z ,  k) are the eigenvalues and eigenfunctions of the spectral problem: 

k2f  2 
~" + 5Z ,N - to2) ~ = 0; (3.2a) 

~(Z• k) = 0. (3.2b) 

Here, k is a free parameter and w is a spectral parameter. The functions ~ ,  are normalized in the interval 
Z_ < z < Z+ with weight N2(z): 

z+ 

f N2(z)~2, (z, k) dz = 1. 
z_ 

In the limit k ~ oo and for fixed n, the functions tpn(z, k) are concentrated in the vicinity of the value z = 
in which N(z)  reaches a maximum and tends to zero for fixed z ~ z0 as exp ( - cons t  �9 k). The function w, in 
the limit k -~ ~ has the asymptotic representation 

Cn 
ton ~ N('~) - -~ + O(k-2), (3.3) 

where the coefficient cn grows with increasing n. 
Our objective is to find an asymptotic representation of the function G for t --+ r For each fixed n and 

t --* cx~, the term Sn in sum (3.1a) tends to zero not more slowly than t -1. Indeed, as t --~ r the steady-state 
point of the phase function in (3.1b) determined [taking into account oscillations of the function J0(kr)] from 

equation - r  + tOto,/Ok = 0, with allowance for (3.3), tends to infinity as ~ in the limit t ~ oo. the For 
sufficiently high t, it appears in the region in which the product ~ , (z ,  k)~.(zo,  k) is exponentially small and 
is estimated as exp ( - cons t  �9 k). Therefore, the asymptotics Sn is determined by the boundary k = 0 of the 
domain of integration in (3.1b). Since ton ..~ k for k --~ 0, the contribution of this point to the asymptotics 
S ,  has the order of t -1. In calculation of the asymptotic behavior of the function G in the limit t --* c~, this 
quantity can be ignored, i.e., the summation in (3.1a) can be performed beginning with some fixed value of 
n. Then, since k/ton ~ r uniformly with respect to k as n --, cr the WKB-asymptotics below can be used 
in this calculation for the eigenvalues can and eigenfunctions ~n. 

4. W K B - A s y m p t o t i c s  of  E i g e n f u n c t i o n s  and  Eigenvalues .  To find the asymptotic representation 
of the eigenvalues, we write asymptotic representations of the solutions u = u+ of Eq. (3.2a), which vanish 
for z = Z+, respectively. Equating these two asymptotics, we obtain an equation for the WKB-asymptotics 
of the eigenvalues wn. 

For k /w  >> 1, the asymptotic representation of the general solution of (3.2a) which is applicable in 
an interval that contains the point z = z_(w) and does not contain z+(w) has the form (see, for instance, 
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[1]) u ~ (OQ_(k ,w , z ) /Oz ) - l / 2 [A_Ai ( -Q_(k ,w , z ) )  + B_Bi ( -Q_(k ,w ,z ) ) ] .  In a similar manner, within an 
interval that  contains the point z+(w) and does not contain z_(w), the general solution of Eq. (3.2a) has 
the asymptotic representation u ~ (OQ+(k,w,z) /Oz)- l /2[A+Ai(-Q+(k ,w,z) )+ B+Bi( -Q+(k ,w,  z))]. Here, 
Q+ are defined by formula (2.10), and A+ and B+ are arbitrary constants. If the function u satisfies a zero 
boundary condition for z = Z_,  we have 

2 v ~ A  
u = u_ ~ [ -  sin O(Q_ (k, w, Z_ ) )A i ( -Q_(k ,  w, z)) 

+ coaO(Q_(k,03, Z_))Bi(-Q_(k,03,  z))], (4.1a) 

where A is an arbitrary constant and the function O(x) is defined by formula (2.11a). Replacing the Airy 
functions Ai(-Q_(k,03,  z)) and B i ( - Q _ ( k , w ,  z)) by their asymptotic representations for IQ-I >> 1 ,  we ob t~n  
a nonuniform asymptotic representation of u_ which is applicable for z < z+(w) and z ~ z_(w): 

0 for z < z_(w), 
u = u_ ~ A sin[kI(z_, z) + O(Q_(k,w, Z_)) /2  - 7r/41 (4.2a) 

(g2(z)  _ 032)1/4 for z > z_(03). 

Here, z_ is determined using formula (2.2), and the functions I and 0 are found using (2.3) and (2.11). 
Analogously, the solution u = u+ vanishing for z = Z+ has an asymptotic representation applicable in 

the vicinity of the point z = z+(w): 

2v/-~A 
u = u+ ~ ~/Q'+(k, 03, z) [ -  sin O(Q+(k, 03, Z+))Ai ( -Q_(k ,  w, z)) 

+ cos O(Q+(k, w, Z+))Si(-Q+(k,  03, z))] (4.15) 

and the nonuniform asymptotics feasible for z > z_(w), z ~ z+(03) 

A sin[kI(z, z+) + "O(Q+(k, 03, Z+))/2 - r/4] 
u = u+ ~ (gZ(z)  - -  032)1] 4 for z < z+(w), (4.2b) 

0 for z > z+(w). 

If w is an eigenvalue of the spectral problem (3.2), the functions u_ and u+ must  coincide with one-place 
accuracy. Hence, taking into account that  I(z,  z+) = I - I(z_,  z) where the integral I is defined by (2.4a), we 
obtain an equation for the asymptotics of the eigenvalues w = wn: 

�9 (w) = �89 Z_)) + 0(Q+(k,~,  Z+))] + kI  

z+(~,) 

= - = ( 4 . 3 )  
O) 

,-(~) 

Since Q+ and Q_ are monotone increasing functions of w, and O(x) is a decreasing function [7, formula 
10.4.71], the function ~/(w) is a monotone decreasing function of w, which tends to infinity as w --~ 0 together 
with the integral I. Thus, the eigenvalues wn are uniquely defined by Eq. (4.3). 

Formulas (4.1) and (4.2) are valid for the eigenfunctions r z) = ~o(k, z, wn). In these formulas the 
constant determined from the normalization condition is 

A = V'~ l Ol -~w (4.2c) 

where I is integral (2.4a) and w = wn. 
Let r z, w,)~o(k, zo, w,)  = U(k, z, zo, wn). Then, it follows from (4.2) that  the function U(k, z, zo, w) 

has the following nonuniform asymptotic representation: 
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for z_(co) < min(z, z0) and max(z, z0) < z+(co) 

2[eikI(zo ,z) + e-ikl(zo, z) + eikl-l+i-g-(k, w) + eik11+i'g+(k,~)]. 
U (4.4) 

0 1  [(g2(z) - c o 2 ) ( m ( z o )  - co2)]'/*co~ I 

and for min(z, z0) < z_(co) or z+(co) < max(z, z0) 

~ ~ 0 .  

Here, the integrals I(zo, z) and 1+ and the functions ~• co) are defined by formulas (2.4) and (2.12a). 
This asymptotics is not applicable for values of co close to N(z) or to N(zo), i.e., for z or z0 close to 

z• 
In this case the asymptotics expressed in terms of Airy functions should be used for the functions 

~o(k,z, co) and ~o(k, zo,w), and thus, for U. For instance, asymptotic representation (4.1a) is used for the 
function ~p(k, z,co) at z close to z.(co) 

5. T h e  G r e e n  F u n c t i o n  A s y m p t o t i c s .  If the function f ( ( )  is even, the Poisson's summation formula 
can be written as 

oO oo 1 oo [ 
f(n) = ~ f(O) + ~ j f(~) exp (27rim~) d~. 

n = 0  m = - - o o  0 

Replacing the terms St, in sum (3.1a) by their WKB-asymptotics,  we obtain with accuracy up to O(t -1) 
OO 

G(t,r,z, zo) = ~ Tin, (5.1a) 
m o o  

where 
o o  O0 

1 f J0 (kr) exp sin tcoU(k, z, zo, co) 
0 0 

Here co = co(() is found from the equation ( = (1/2r)~(co) = ( 1 / 2 ~  (0"_ + 0"+ + 2kI) - 1/2 [0"+ = 
O(Q• co, Z• In the limit ( --, 0 we have co(() ---* maxN(z) = N(~,) = N. Transforming to the integration 
variables q = k/t and in (5.1a) co, we obtain 

where 

(-1)rot ] d w  f ~(t,q,co, z, zo)a(t,q,co, z, zo)dq, (5.2) 
T,,, - 27r2 

0 0 

sin tw 
r q, w, z, zo) - - -  Jo(tqr) exp (2imtqI)U(tq, z, zo, w); 

CO 

f)(t,q, co, z, zo) =co2 exp (ira(O__ + O+))loz/oco[(1 + H(tq,co)); 

1(0 § 0L 0i 

In the limit t --* r the function H tends to zero as t -Ua.  Therefore, we set H = 0 in the subsequent 
asymptotic representation of the Green function. The function �9 is a rapidly oscillating function of t, and its 
derivatives with respect to q and co are on the order of t as t ~ e~. The function f~ can be considered a slowly 
changing function of q and co, since its derivatives are on the order of t 2D. 

When calculating the asymptotics Tin, we assume first that for the given r, z, and z0 the values of w 
at stationary steady-state points of the function O are different from N(z) and N(zo). Then, the nonuniform 
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asymptotic representation (4.4) can be used for U, i.e., it is assumed that 

N_ jo(tqr)eim['~_(tq,~)+6+(tq,~)+2tqI ] sin tw 
t f d q f  ,/4 Tm - 4~r2 -- 

0 0 

• (e itql(z~ q-e -itql(z6'z) -4-e itql-l+i6--(~a) q-e itqll+i'~+(w)) dw, 

where N_ = min(N(zo), N(z)).  
If this expression is substi tuted into (5.1b), the resultant sum is 

oO 

Here 

G =  ~_, Lp. 
p = - o o  

co N_ 
t [ [ Jo(tqr)cos(tqlv(z, zo,w ) + Cp(tq, w ) -  or/4) sin tw 

Lp = - -~ 2 . ,  dq J ~ -- - -  -~. .o . , : -- ---~ ~1]~ dw; 
o o 

I v are integrals (2.4), the functions r are defined by formula (2.8) in which the constants 8+ are replaced by 
the smoothed functions "~+(tq, w). 

Let us find asymptotic representations of the integrals L v in the limit t --+ r We begin with calculation 
of L0. Since in this case r = r / 4 ,  the integration with respect to q is reduced to a tabular integral [8, formula 

L 0 -  

6.672.6], and 

N ~  ' /  
27r 2 

wO 

sin twdw 

((N2(z) -w2)(N2(zo)  -w2))1/4w r2~-~-/02' 

where w0 is a root of Eq. (2.5) for p = 0. Calculating the asymptotics of L0 in the limit t ~ oo, we obtain 
expression (2.6) for the function Ao(r, z, zo). 

The above asymptotics becomes invalid as z ~ z0, i.e., w0 ~ 0. To find the asymptotics of L0 in this 
case, we write this function in the form 

N_ 
1 / si__nt__w= 

Lo_ vG- o 
W@) d~. 

Here, the function 

I 

W(w) = ~((N2(z)  _ w2)( N2(zo) _ w2)) ,/4 . r2 I~(w) 

is regular uniformly with respect to z - z0 for small w. In the limit t -~ oo the main term of the asymptotics 
of L0 is given by 

O0 

1 sin tw do: - 1 Jo(two)W(wo). 
L o -  27r2 W(w~ f 4~r 

Calculating W(wo), we obtain the algorithm described in Section 2 for finding asymptotic representation of 
the Green function as z ~ z0. 

We now consider the asymptotics of Lp for p ~ 0. Replacing Jo(tqr) by the asymptotics of this function 
for tqr >> 1, we have the product of three trigonometric functions under the integration sign. We represent 
them as the sum of exponents and use the steady-state method. The stationary points of the phase function 
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are determined from the equations 

0 ( w - q r + q l p ) =  0 (w-qr+qIp )=O,  i.e. r=Z ,=Ip ( z ,  zo, w), l+qOIp/Ow=O. 

The first of these equations coincides with (2.5) and defines the function wp(r, z, zo), and the second is used 
to find the function qp = qp(z, zo,wp) = [OIp/Ow[ -i.  Obviously, the phase function value at the steady point 
is wp. 

Calculating Lp by the steady-state method, we obtain expression (1.2) in which wp is determined from 
Eq. (2.5), Ap from (2.6), sad Cp from (2.8), where the smoothed functions 54- determined from (2.12) are 
replaced by the constants ~• wp). " 

The steady-state method is inapplicable if some value of wp is close to N(z) or N(zo). In this case, the 
nonuniform asymptotics of the function U must not be used for the function U in the corresponding integral 
Tm [see (5.2)]. The asymptotics of U expressed in terms of Airy functions (see Section 4) should be used. As 
a result, we find an expression for T,n in the form of a threefold integral whose phase function has two close 
stationary points. The uniform asymptotics of such integrals is considered, for instance, in [9]. Using these 
results, we obtain formulas (2.9), which are applicable for top that are close to N(z) or to N(zo). 
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